SCHAEFFLER

Ironless Linear Motors UPLplus Series

Contents

UPLplus – the accelerator	4
Benefits and fields of application	5
Performance ranges	6
Modularity	7
Type designation	8
UPLplus-30-L	10
UPLplus-60-L	12
UPLplus-80-L	14
Checklist for your inquiry	16
Glossary	18

UPLplus – the accelerator

The ironless linear motors feature a force to mass ratio that is up to 42% better than similar competing products. With this product, Schaeffler Industrial Drives is following the trend for lightweight design, which is particularly relevant in medical technology and automation. Therefore the movement axes can be dimensioned smaller and lighter, resulting in higher acceleration speeds and increased output for the equipment.

Innovative manufacturing technology

The dead weight of the motor plays a key role, particularly in lightweight axis constructions that require maximum dynamic properties.

Thanks to innovative manufacturing technology, combined with the use of different materials, low masses can be achieved for the primary part along with excellent heat dissipation properties. By way of comparison, we generate up to 43% more nominal force using these measures than by using conventional technology with wound coils. This advantage enables the user to create smaller motor dimensions, which in turn allows for a more compact and lightweight construction.

Benefits and fields of application

UPLplus primary parts are extremely lightweight thanks to printed circuit technology.

Lesson Constant and Constant an

Benefits

- No cogging torque
- Optimum synchronisation
- Optimum positioning accuracy
- No attraction forces to the guidance system
- Increased output/productivity due to dynamic positioning
- Smaller motor dimensions possible due to innovation in manufacturing technology
- More compact/lightweight construction possible due to reduced motor mass

Fields of application

- Automation technology
- Measurement and inspection machines
- Medical engineering
- Air bearing axes
- Pick and place
- Semiconductor placement
- Z axis drives

The perfect drive for every application...

Measuring technology

Productronics

Performance ranges

Modularity

By arranging primary and secondary parts in different ways, various applications can be implemented, such as:

- Moving secondary part for short travel distances (the primary part is fixed in position; there are no moving cables)
- Several autonomous or parallel-operated primary parts in one secondary part track (the primary and secondary parts can be attached from either side)
- Gantry drives

Example configurations of the UPLplus linear motors:

One primary part on one secondary part track.

Several primary parts on one secondary part track.

Primary parts linked in parallel, version 1.

Primary parts linked in parallel, version 2.

Cross table or gantry arrangement.

Accessories

- Adapter strips
- Cable set
- Weight force compensation

Type designation UPLplus series, primary part

		UP	Lplus-3P-H-L-X-PRIN
Short des UPLplus	signation, motor UPLplus series, ironless linear motor (U-shaped, printed, linear)		
Number o	of motor phases		
3P	3-phase		
Dimensio	ns		
Н	Effective active height [mm]		
L	Length of coil system [mm]		
Version			
0	Standard		
Sx	Special version (customer-specific)		
Motor pa	rt		
PRIM	Primary part		

Type designation UPLplus series, secondary part

UPLplus-H-L(-X)-SEK

Short designation, motor

UPLplus	UPLplus series, ironless linear motor
	(U-shaped, printed, linear)

Dimensions

Н	Effective active height [mm]
L	Length of secondary part [mm]

Version

Optional, only in special versions Sx Special version (customer-specific)

Motor part

SEK Secondary part

UPLplus-30-L

Drawing and mechanical parameters

UPLplus-30-L drawing

(1) Mounting surface (2) Motor connection (3) Sensor connection

Primary part	Symbol	Unit	UPLplus-	UPLplus-	UPLplus-	UPLplus-
			3P-30-60	3P-30-120	3P-30-180	3P-30-240
			-PRIM	-PRIM	-PRIM	-PRIM
Block length	L _{prim}	mm	88	148	208	268
Coil unit length	L_1	mm	69.5	129.5	189.5	249.5
Maximum mounting length	L_2	mm	66	126	186	246
Mounting holes	n ₁	Number	4	7	10	13
Hole spacing	C ₁	mm	20	20	20	20
Mass	m	g	64	122	182	242

Secondary part	Symbol	Unit	UPLplus- 30-90 -SEK	UPLplus- 30-120 -SEK	UPLplus- 30-390 -SEK
Length	L _{sek}	mm	90	120	390
Mounting holes	n ₂	Number	3	4	13
Hole spacing	C ₂	mm	30	30	30
Mass	m	g	447	596	1938
Pole pair width	$2\tau_p$	mm	30	30	30

UPLplus-30-L Performance data

Parameter	Symbol	Unit	UPLplus- 30-60	UPLplus- 30-120	UPLplus- 30-180	UPLplus- 30-240
Maximum impulse force (1 s) at I _{mp} (25 °C)	F _{mp}	Ν	184	368	551	735
Peak force (3 s) at I _p (25 °C)	F _p	Ν	106	212	318	424
Nominal force, cooled at I _{cw} (140 °C)*	F _{cw}	Ν	38	75	113	151
Nominal force, not cooled at I _c (140 °C)	F _c	Ν	25	50	75	100
Maximum impulse current (1 s)	I _{mp}	A _{rms}	17.1	17.1	17.1	17.1
Peak current (3 s)	l _p	A _{rms}	9.9	9.9	9.9	9.9
Nominal current, cooled (140 °C)	l _{cw}	A _{rms}	3.5	3.5	3.5	3.5
Nominal current, not cooled (140 °C)	l _c	A _{rms}	2.3	2.3	2.3	2.3
Power loss at F _p (25 °C)	P _{lp}	W	624	1249	1872	2495
Power loss at F _{cw} (140 °C)	P _{lcw}	W	114	228	342	456
Power loss at F _c (140 °C)	P _{lc}	W	50	100	150	200
Motor constant (25 °C)	k _m	N/√W	4.2	6.0	7.4	8.5
Force constant	k _f	N/A_{rms}	10.7	21.5	32.2	42.9
Back EMF constant, phase to phase	k _u	V/(m/s)	8.8	17.5	26.3	35.1
Limit speed	V _p	m/s	30.4	12.5	6.5	3.5
Electrical resistance, phase to phase (25 °C)	R ₂₅	Ω	4.3	8.5	12.8	17.0
Thermal resistance	R_{th}	K/W	1.01	0.50	0.34	0.25
Thermal time constant	τ_{th}	S	48	48	48	48
Temperature sensors				PTC, F	Pt1000	
Inductance, phase to phase	L	mH	1.1	2.3	3.4	4.5
Electrical time constant	$\tau_{_{el}}$	ms	0.27	0.27	0.27	0.27
Permissible winding temperature	θ	°C	140	140	140	140
DC link voltage (maximum)	U _{dcl}	V	330	330	330	330

* These values apply when the temperature is 25 °C at the mounting base of the primary part.

Subject to modifications without prior notification, where they serve technical progress. Tolerance range for values: ±10% We would be glad to provide additional data and drawings on request.

We recommend a detailed application review by our engineering team for suitable motor selection.

UPLplus-60-L

Drawing and mechanical parameters

UPLplus-60-L drawing

(1) Mounting surface (2) Motor connection (3) Sensor connection

Primary part	Symbol	Unit	UPLplus- 3P-60-120 -PRIM	UPLplus- 3P-60-180 -PRIM	UPLplus- 3P-60-240 -PRIM	UPLplus- 3P-60-300 -PRIM	UPLplus- 3P-60-360 -PRIM
Block length	L _{prim}	mm	146	206	266	326	386
Coil unit length	L ₁	mm	129.5	189.5	249.5	309.5	369.5
Maximum mounting length	L ₂	mm	123	183	243	303	363
Mounting holes	n ₁	Number	5	8	11	14	17
Hole spacing	C ₁	mm	20	20	20	20	20
Mass	m	g	189	283	377	471	564

Secondary part	Symbol	Unit	UPLplus- 60-90 -SEK	UPLplus- 60-120 -SEK	UPLplus- 60-390 -SEK
Length	L	mm	90	120	390
Mounting holes	n ₂	Number	3	4	13
Hole spacing	C ₂	mm	30	30	30
Mass	m	g	865	1154	3748
Pole pair width	$2\tau_p$	mm	30	30	30

UPLplus-60-L Performance data

Parameter	Symbol	Unit	UPLplus- 60-120	UPLplus- 60-180	UPLplus- 60-240	UPLplus- 60-300	UPLplus- 60-360	
Maximum impulse force (1 s) at I _{mp} (25 °C)	F _{mp}	Ν	715	1073	1431	1788	2146	
Peak force (3 s) at I _p (25 °C)	F _p	Ν	413	620	826	1033	1239	
Nominal force, cooled at I _{cw} (140 °C)*	F _{cw}	Ν	106	159	212	265	318	
Nominal force, not cooled at I _c (140 °C)	F _c	Ν	83	124	166	207	249	
Maximum impulse current (1 s)	I mp	A _{rms}	33.1	33.1	33.1	33.1	33.1	
Peak current (3 s)	l _p	A _{rms}	19.1	19.1	19.1	19.1	19.1	
Nominal current, cooled (140 °C)	l _{cw}	A _{rms}	4.9	4.9	4.9	4.9	4.9	
Nominal current, not cooled (140 °C)	۱ _с	A _{rms}	3.8	3.8	3.8	3.8	3.8	
Power loss at F _p (25 °C)	P_{lp}	W	1850	2775	3700	4625	5550	
Power loss at F _{cw} (140 °C)	P _{lcw}	W	177	265	353	442	530	
Power loss at F _c (140 °C)	P _{lc}	W	108	162	216	270	324	
Motor constant (25 °C)	k _m	N/√W	9.6	11.8	13.6	15.2	16.6	
Force constant	k _f	N/A _{rms}	21.6	32.4	43.2	54.0	64.8	
Back EMF constant, phase to phase	k _u	V/(m/s)	17.6	26.5	35.3	44.1	52.9	
Limit speed	V _p	m/s	28.6	17.7	12.2	8.9	6.7	
Electrical resistance, phase to phase (25 °C)	R ₂₅	Ω	3.4	5.1	6.7	8.4	10.1	
Thermal resistance	R_{th}	K/W	0.65	0.43	0.33	0.26	0.22	
Thermal time constant	τ_{th}	S	91	91	91	91	91	
Temperature sensors			PTC, Pt1000					
Inductance, phase to phase	L	mH	1.0	1.5	2.0	2.5	3.0	
Electrical time constant	$\tau_{_{el}}$	ms	0.30	0.30	0.30	0.30	0.30	
Permissible winding temperature	θ	°C	140	140	140	140	140	
DC link voltage (maximum)	U _{dcl}	V	600	600	600	600	600	

* These values apply when the temperature is 25 °C at the mounting base of the primary part.

Subject to modifications without prior notification, where they serve technical progress. Tolerance range for values: ±10% We would be glad to provide additional data and drawings on request.

We recommend a detailed application review by our engineering team for suitable motor selection.

UPLplus-80-L

Drawing and mechanical parameters

UPLplus-80-L drawing

(1) Mounting surface (2) Motor connection (3) Sensor connection

Primary part	Symbol	Unit	UPLplus- 3P-80-120	UPLplus- 3P-80-180	UPLplus- 3P-80-240	UPLplus- 3P-80-300
			-PRIM	-PRIM	-PRIM	-PRIM
Block length	L _{prim}	mm	146	206	266	326
Coil unit length	L ₁	mm	129.5	189.5	249.5	309.5
Maximum mounting length	L ₂	mm	123	183	243	303
Mounting holes	n ₁	Number	5	8	11	14
Hole spacing	C ₁	mm	20	20	20	20
Mass	m	g	232	342	452	552

Secondary part	Symbol	Unit	UPLplus- 80-90 -SEK	UPLplus- 80-120 -SEK	UPLplus- 80-390 -SEK
Length	L	mm	90	120	390
Mounting holes	n ₂	Number	3	4	13
Hole spacing	C ₂	mm	30	30	30
Mass	m	g	1231	1641	5340
Pole pair width	$2\tau_p$	mm	30	30	30

UPLplus-80-L Performance data

Parameter	Symbol	Unit	UPLplus- 80-120	UPLplus- 80-180	UPLplus- 80-240	UPLplus- 80-300
Maximum impulse force (1 s) at I _{mp} (25 °C)	F _{mp}	Ν	903	1354	1805	2257
Peak force (3 s) at I _p (25 °C)	F _p	Ν	521	782	1042	1303
Nominal force, cooled at I _{cw} (140 °C)*	F_{cw}	Ν	125	187	249	311
Nominal force, not cooled at I _c (140 °C)	F _c	Ν	89	133	177	221
Maximum impulse current (1 s)	I _{mp}	A _{rms}	33.0	33.0	33.0	33.0
Peak current (3 s)	l _p	A _{rms}	19.0	19.0	19.0	19.0
Nominal current, cooled (140 °C)	l _{cw}	A _{rms}	4.5	4.5	4.5	4.5
Nominal current, not cooled (140 °C)	l _c	A _{rms}	3.2	3.2	3.2	3.2
Power loss at F _p (25 °C)	P _{lp}	W	2427	3641	4855	6069
Power loss at F _{cw} (140 °C)	P _{lcw}	W	201	301	402	502
Power loss at F _c (140 °C)	P _{lc}	W	102	152	203	254
Motor constant (25 °C)	k _m	N/√W	10.6	13.0	15.0	16.7
Force constant	k _f	N/A _{rms}	27.4	41.1	54.8	68.5
Back EMF constant, phase to phase	k _u	V/(m/s)	22.4	33.5	44.7	55.9
Limit speed	V _p	m/s	21.4	12.8	8.5	5.9
Electrical resistance, phase to phase (25 °C)	R ₂₅	Ω	4.5	6.7	8.9	11.2
Thermal resistance	$R_{_{th}}$	K/W	0.57	0.38	0.29	0.23
Thermal time constant	τ_{th}	S	116	116	116	116
Temperature sensors				PTC, F	Pt1000	
Inductance, phase to phase	L	mH	1.4	2.1	2.8	3.5
Electrical time constant	τ _{el}	ms	0.31	0.31	0.31	0.31
Permissible winding temperature	θ	°C	140	140	140	140
DC link voltage (maximum)	UDCL	V	600	600	600	600

* These values apply when the temperature is 25 °C at the mounting base of the primary part.

Subject to modifications without prior notification, where they serve technical progress. Tolerance range for values: ±10% We would be glad to provide additional data and drawings on request.

We recommend a detailed application review by our engineering team for suitable motor selection.

Checklist for your inquiry UPLplus linear motors

Please fill out the following checklist so we can answer your inquiry as quickly and precisely as possible. Do not hesitate to contact the Schaeffler sales team if you have any questions.

Company	Contact name	Sector · Project name
Phone	E-mail	
Application		
Environmental conditions	Indoor area, 25 °C	Other
Additional mass [kg]		
External forces, such as friction [N]		
Maximum speed [m/s]		
Maximum acceleration [m/s ²]		
Available installation space [mm]	Axis length, total	Width x height
Stroke [mm]	Total stroke	Working stroke
Axis arrangement	□ Horizontal	□ Vertical
Weight force compensation	□ Yes	□ No
Clamping at standstill	□ Yes	□ No
DC link voltage [V _{pr}]		

Movement data

Positioning time [s]

Pause in movement [s]

Movement profile

Requirement · quantity

□ Prototype

□ One-time requirement

□ Series

Contact

Cooling

Schaeffler Industrial Drives AG & Co. KG Phone +49 3681 7574-0 · sales-sid@schaeffler.com

Glossary

Symbol	Meaning	Unit	Explanation
F _{mp}	Impulse force	Ν	Motor force which can be generated at maximum current density with impulse current I _{mp} in the millisecond range. This should not be used for motor sizing.
F _p	Peak force	Ν	Motor force which can be generated at peak current I _p . The permitted duration of peak force is heavily dependent on the current motor temperature and lasts only a few seconds (max. 3 s). When peak force is achieved, the coil temperature must not exceed 140 °C.
F _{cw}	Nominal force, cooled (25 °C at mounting base)	Ν	Motor force at I _{cw} which is available as a constant force at a cooled temperature during rated operation when an appropriate level of cooling is provided, and at which a temperature drop of approx. 115 K occurs between the winding and the cooling system.
F _c	Nominal force, not cooled	Ν	Motor force at nominal current I _c if all motor phases have the same loads, whereby it is assumed that the heat exchange surface is a mounting plate with approx. three times the surface area of the primary part surface.
l _{mp}	Impulse current	A _{rms}	Maximum effective impulse current in the millisecond range
l _p	Peak current	A _{rms}	Maximum effective peak current in the range of a few seconds (max. 3 s)
_{cw}	Nominal current, cooled	A _{rms}	Effective nominal current which can be achieved in continuous operation when the mounting base temperature is 25 °C. The winding resistance value changes in accordance with the actual winding temperature.
l _c	Nominal current, not cooled	A _{rms}	Effective nominal current at which the related power loss at the defined size of the mounting base (see F_c) without compulsory cooling leads to a maximum motor temperature of approx. 140 °C.
P	Power loss	W	The thermal output resulting in the motor winding which leads to a time-dependent temperature increase subject to the operating mode (current) and the environmental conditions (cooling). In the upper dynamic range (at F_p), P_1 is particularly high due to the squared dependence on current, whereas the warming in the nominal current range is relatively low. P_1 is calculated with the aid of the motor constant k_m for a movement section with the required force F: $P_1 = (F/km)^2$.
P _{lp}	Powerloss	W	Peak power loss at I _p
P _{lcw}	Power loss (25 °C at mounting base)	W	Power loss at I _{cw}
P _{lc}	Powerloss	W	Power loss at I _c
k _m	Motor constant	N/VW	Motor constant which expresses the relation between the generated force and the power loss (efficiency of the motor). It is dependent on the temperature. If the winding temperature is 140 °C, the motor con- stant reduces to 0.85 times its normal value.

Symbol	Meaning	Unit	Explanation
k _f	Force constant	N/A _{rms}	Winding parameter which, when multiplied by the current in the linear dynamic range, represents the motor force that is being produced: $F = I_c \cdot k_f$
k _u	Back EMF constant	V/(m/s)	Winding parameter which represents the armature countervoltage arising at the motor terminals in generator operation, subject to the speed. $U_g = k_u \cdot v$
V _p	Limit speed	m/s	Maximum speed at U_{DCL} . Speed that can be reached for a short period of time – it is reached when the force F_p at current I_p can be kept constant. The limit speed is higher when currents/forces are lower.
R ₂₅	Electrical resistance	Ω	Winding resistance at 25 °C. At 140 °C, it increases to 1.45 times its normal value.
R _{th}	Thermal resistance	K/W	Resistance at which the temperature difference between the winding system and the cooling element surface or cooling base can be deter- mined at a specific power loss value.
τ _{th}	Thermal time constant	S	Duration until 63% of the maximum coil temperature (140 °C) is reached when operating at the nominal current (nominal force).
L	Inductance	mH	Motor inductance – measured between two phases
τ _{el}	Electrical time constant	ms	Constant which describes the L/R ratio. The ratio is approximately constant, regardless of the winding system design. The controlled effective time constant decreases depending on the degree of voltage overshoot.
9	Winding temperature (at the sensor)	°C	 Permissible winding temperature which is recorded by sensors with a specific offset. The motor surface temperature that arises from this depends on: the specific installation conditions (table size, dimensions of the machine construction) the heat dissipation conditions (cooling) the operating mode and therefore the mean power input and can only be determined if these factors are known.
U _{dcl}	DC link voltage	V	DC link voltage or supply voltage of the power actuators. The higher the speed and the countervoltage that rises with it and the greater the losses that depend on the frequency, the higher the voltage has to be.
2τ _p	Pole pair width	mm	The pole pair width (also magnet periods) $2\tau_p$ denotes the travel distance of a pole pair on the linear motors. At the same time, τ with index p is the pole width (magnet width) in the displacement direction with a magnetic field alternating between N and S.

Schaeffler Industrial Drives AG & Co. KG

Mittelbergstrasse 2 98527 Suhl Germany www.schaeffler-industrial-drives.com sales-sid@schaeffler.com

In Germany: Phone +49 3681 7574-0 From other countries: Phone +49 3681 7574-0

Every care has been taken to ensure the correctness of the information contained in this publication but no liability can be accepted for any errors or omissions. We reserve the right to make technical changes. © Schaeffler Industrial Drives AG & Co. KG Issued: 2019, October This publication or parts thereof may not be reproduced without our permission.