

- Torque Motors
 - **RKI Series**

IDAM Direct Drives: Precise. Fast. Efficient.

INA – Drives & Mechatronics AG & Co. KG, a member of the Schaeffler Group, is a specialist in linear and rotary direct drives. To complement these products, we also offer directly driven positioning systems and all the necessary controllers and mechatronic assemblies. In addition to standard products, IDAM also develops and produces customised drive solutions.

In modern machines and equipment, direct drives are increasingly replacing standard drive solutions because of ever-stricter requirements for dynamics, precision and cost-effectiveness. Directly linking the motor and the moving mass increases the dynamic and static rigidity, enabling high-performance positioning movements. Direct drives are low wearing. This allows maintenance and operating costs to be reduced whilst also increasing availability.

Teams at IDAM have been developing and producing direct drives and complex drive systems for the following sectors: machine tools and production machinery, automation, productronics/semicon, measuring technology and medical engineering for over 20 years. Models and simulations are integrated into the development process for direct drives and positioning systems, making the process more efficient. IDAM has a state-of-the-art quality

management system. At IDAM, quality management is a dynamic process that is checked daily and continuously improved. IDAM is certified to DIN EN ISO 9001:2008.

IDAM uses specially developed tools to develop and design the motors, including tools for magnetic, mechanical and thermal simulation. This produces results that our customers can use to optimise their subsequent designs.

Linear direct drives

Rotary direct drives

Contents

Product Range

Benefits of Rotary Direct Drives
RKI Torque Motors – Features, advantages, applications5
RKI Torque Motors – Design, torque, cogging torques, active force pulsation
RKI Torque Motors – Winding adaptation, efficiency
Torque-Rotary Speed Characteristic
RKI Series – Torque ranges
Designation
RKI Series – Drawings and technical data

General Information

Checklist for Your Enquiry	.26
RKI Torque Motors for Turning/Milling Applications	.28
Technical Information and Consulting Services	.29
IDAM Worldwide	.30
Overview of Publications	• 31

Benefits of Rotary Direct Drives

Performance

1. No conversion of the motion form

There is no elasticity, no play, little friction and no hysteresis in the drive train resulting from transmission or coupling elements.

2. Multi-pole motor

Very high torques are produced owing to the multi-pole design. These can be used from a speed > 0 up to the nominal speed.

3. Thin, ring-shaped rotor

The motor has low inertia owning to the thin, ring-shaped design with a large, free internal diameter. This is the basis for fast acceleration.

4. Direct position measurement

Direct position measurement and the rigid mechanical structure enable highly precise, dynamic positioning operations.

Operating costs

1. No additional moving parts

This reduces the effort of installing, adjusting and maintaining the drive assembly.

2. Minimal wear in the drive train

The drive train has a very long service life, even if subjected to extreme alternating loads. This reduces machine downtime.

3. High availability

In addition to the longer service life and reduced wear, the sturdiness of the torque motors increases their availability.

4. Energy efficiency

Heat is reduced to a minimum, thus saving energy in the frequency converter and heat exchanger.

Design

1. Hollow shaft

The hollow shaft with a large diameter makes integration or lead-through of other assemblies possible (shafts, rotary distributors, supply lines etc.). Bearing level, generation of force and effective working area can be very close to one another.

2. Installation of primary part

The ring for the primary part can be easily integrated in the machine design owing to the small space requirement (thin ring).

3. Small height

A very compact and axially small design with a high torque is produced in combination with the large, free internal diameter (hollow shaft).

4. Few parts

The well-engineered design makes it easier to integrate the motor parts into the machine concept.

There are only a few, very sturdy parts, which reduces the fail rate (high MTBF^{*}).

RKI Torque Motors Features, advantages, applications

Features

Advantages

• Slotted, permanent magnet excited AC synchronous direct drive motors

- High performance internal rotor
- Static and dynamic load rigidity
- Very good synchronisation
- Best values of motor constant
- Downsizing possible
- Performance upgrade for existing torque motor applications
- Less cooling capacity necessary
- Eddy current losses are reduced to a minimum
- Magnetic flux will be increased by a special magnetic configuration

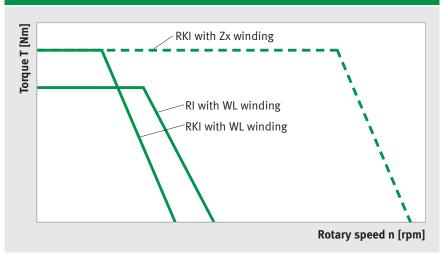
Compared to standard motors (internal rotor):

- +30% more torque
- +400% more speed
- +500% more mechanical power output
- -60% less power loss
- Up to **60%** lower TCO (Total Costs of Ownership)

Applications

- Rotary tables for turning and milling
- Swiveling axes
- Workpiece spindles
- Automation technology
- Printing and packaging machines
- Presses
- In machine tools as CNC axis
- High-precision positioning applications

RKI Torque Motors Design, torque, cogging torques, active force pulsation


The RKI rotary direct drive differs primarily from the standard RI series due to its innovative rotor design. This results in two effects. On one hand the magnetic field is concentrated and an increased force which is increased up to approximately 30% generated in the air gap. The increased force results in a proportionally higher torque for the same otherwise unchanged stator design and same current load.

On the other hand, this innovative rotor design drastically reduces core loss and magnetic flux leakage in the rotor. For rotors which are normally not cooled, it is prerequisite for considerably higher rotary speeds (up to around factor 4) compared to standard torque motors. Higher torques and higher rotary speeds result in higher power outputs:

$P_{mech} = T x n.$

As a rule, higher performance converters are required to operate RKI motors with a higher base current (see also winding adaptations on page 7).

The magnetic circuits of the RKI motors have been optimised using FEM calculations such that disruptive cogging torques have been eliminated as far as possible when in the zero-current state. They are therefore practically not relevant for most applications. Even when active force pulsation (torque fluctuations) occurs during active current feed, the values for all motor series have been reduced to below 1% of the respective reference torque. RKI motors therefore offer an advantageous combination of high power output and very good synchronous features, i.e. the significant prerequisites for demanding applications in mechanical engineering.

Comparison of the torque and the rotary speed of the RI and RKI series with different windings

RKI Torque Motors Winding adaptation, efficiency

As a rule, the winding of each RKI torque motor has to be adapted to the application (T-n operating points) and to the most frequently specified current and voltage limits. It is only in this way that the main features listed previously will be able to show their full advantage.

Depending on its rotary speed, each motor induces a counter voltage which is proportional to the generated torque in the linear modulation range. The voltage constant is a measure for the induced voltage and, in addition to inductivity, is an important influencing factor for the voltage requirement of the motor at a given rotary speed.

As the operating voltage of 600 V_{DCL} (intermediate circuit voltage) is given by the converter, the voltage constant has to be adapted for more powerful and faster motors.

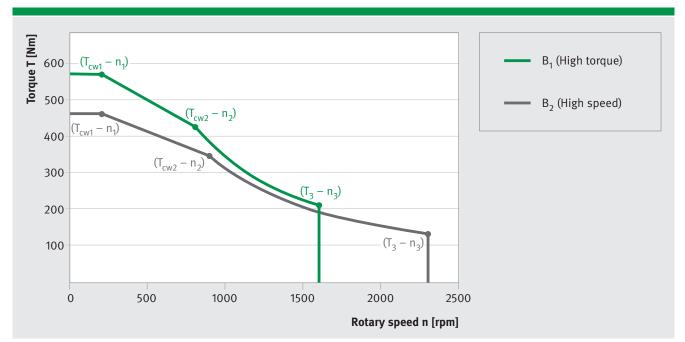
The torque can be maintained up to the so-called limiting speed (also transition speed or operating speed for field weakening). It would then rapidly drop without further field weakening. The voltage constant and/or the proportional torque constant is adapted to all basic conditions (also inductivity and resistance) by modifying the number of windings and winding cross-section or by changing the internal winding connection.

For example:

Halving the number of windings at the same torque, the same intermediate circuit voltage and the same dissipation leads to a doubling of the power requirement with double the winding cross-section.

At the same current density, inductivity and electrical resistance drop to a quarter, whereby the electrical time constant L/R remains constant.

The higher current level at higher rotary speeds and/or the necessity for field weakening from the limiting speed (transition speed) is of importance for the user.

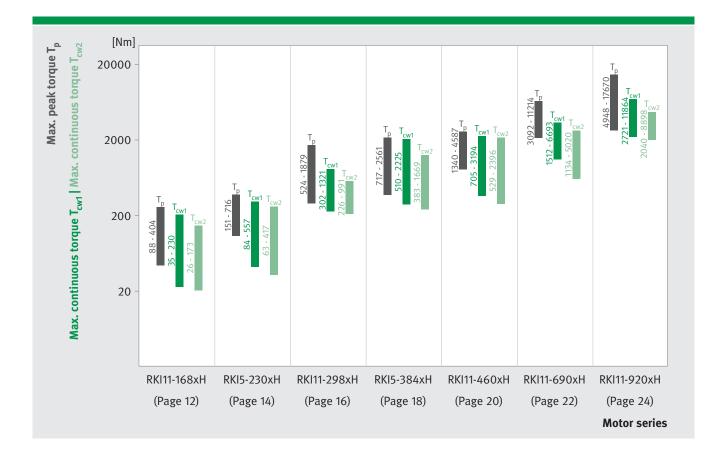

Direct comparison of an RI standard motor series with WL winding against the RKI series with the same WL winding reveals that the achievable rotary speed drops for this version of the RKI series. The RKI series with high current winding Zx on the other hand makes a higher torque and a considerably increased rotary speed possible. Adapting the winding can result in a five-fold increase in mechanical power output.

A further significant improvement can be observed, even when only observing efficiency and consequently the heat loss at a delivered torque. A direct comparison is possible using the motor constant. The motor constant k_m (Nm/ \sqrt{W}) states how much warmth is generated at a specific torque. The power loss in W is $P_l = (T/k_m)^2$. This means a four-fold loss when constant k_m is halved.

A comparison of the RI and RKI series shows that up to 60% of the power loss can be saved at the same delivered torque. Less warmth is generated and less cooling is therefore required. This in turn means lower operating costs (TCO).

Torque-Rotary Speed Characteristic

Example: RKI5-230x100


T(n) diagram using RKI5-230x100 as an example

The T(n) diagram considers the current and speed dependent total losses of the motor and associated torque and rotary speed limitations independently of the actual winding design. The torque curves, which are possible for a short period due to the winding, can lie considerably above these thermal limiting curves.

The motor losses comprise currentdependent copper losses in the winding and rotary speed and current-dependent core losses in the stator and the rotor. The torque must be reduced as the rotary speed increases to ensure a constant balance between the total losses and the permissible motor temperature with required stator water cooling. The static continuous torque T_{cw1} can be maintained up to rotary speed n_1 . Up to rotary speed n_2 , the continuous torque is to be reduced by reducing the current to T_{cw2} when core losses are increasing.

Under the precondition that the rotary speed n_2 approximately corresponds to the operating speed for field weakening, the motor can be operated from this operating point ($T_{cw2} - n_2$) at constant power output and thus with approximately constant total losses up to rotary speed n_3 . The torque drops according to the equation $T = P_{cont} / n$ to the value T_3 . Winding dependent limitations can be superimposed on this thermally conditioned torque curve. The curves for B_1 or B_2 consider the premagnetisation range for different types of magnets fitted to the rotor.

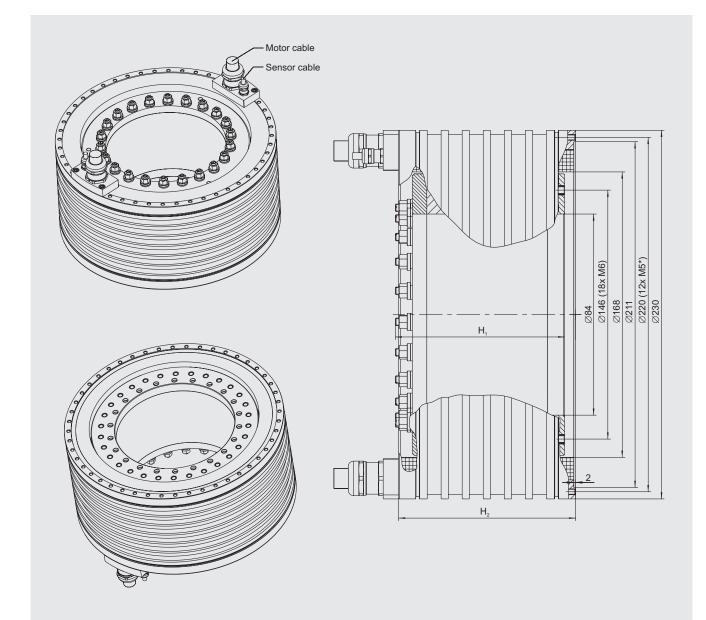
RKI Series Torque ranges

Designation RKI series, primary part

<u>XXXXX - 3P - DxH - X - X - X - X</u>	<u> - PRIM</u>
Short designation of motor type	
RKI RKI series, high performance internal running motor	
Model code	
Number of motor phases	
3P 3-phase	
Dimensions	
Effective diameter air gap x active height (mm)	
Winding types	
WLx Low speed, low current requirement	
WMx Medium speed	
WHx High speed, high current requirement	
XXX Other winding designs on request	
Temperature monitoring	
0 Standard (2 monitoring circuits)	
S Special design on request	
Commutation type	
0 Without sensors, measuring system commutated	
S Special design on request	
Model variant	
O Ring provided by the customer	
M Complete motor (parts are manufactured by IDAM)	
K Stator ring with cooling plus additional jacket	
and O-ring seals	
Motor part	

PRIM Primary part

The IDAM article number in the order confirmation is binding for the unequivocal designation of the motor.


Designation RKI series, secondary part

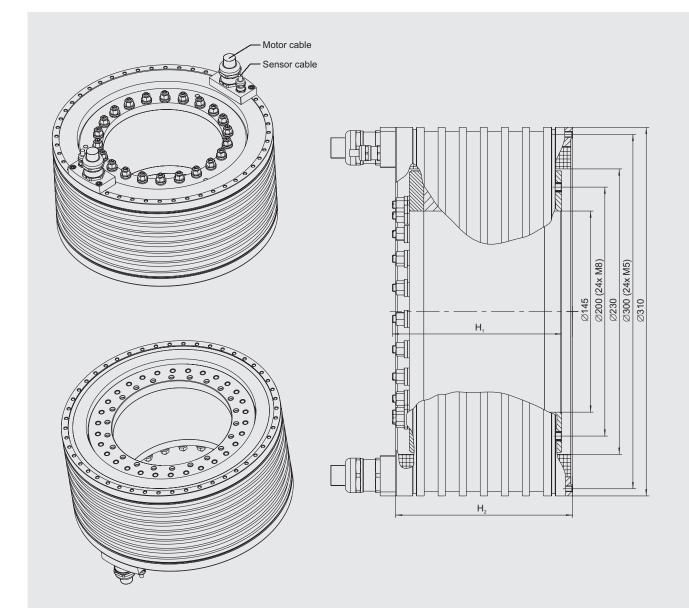
			<u>XXXXX</u> - <u>3P</u> - [<u> DxH</u> - <u>SEK</u> - <u>RXX</u>
Short de RKI	esignation of motor type RKI series, high performance internal runni	ing motor		
Model o	code			
Number 3P	r of motor phases 3-phase			
Dimens Effective	ions e diameter air gap x active height (mm)			
Motor p	part			
SEK	Secondary part			
Magnet	ic configuration			

RKI11-168xH

Drawing

*Note: The number of threads is doubled from the height of 100 mm.

Mechanical interfaces	Symbol	Unit	RKI11- 168x25	RKI11- 168x50	RKI11- 168x100
Height of rotor	H ₁	mm	68	93	143
Height of stator	H ₂	mm	70	95	145
Inertia of rotor	J	kgm ²	0.020	0.033	0.061


Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%

RKI11-168xH Technical data (dimensioning examples)

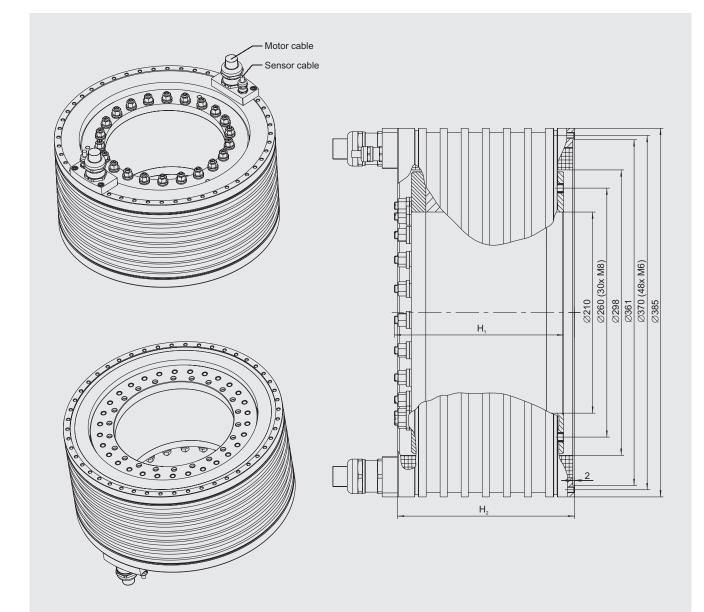
Technical data	Symbol	Unit	RKI11- 168x25 (High torque)	RKI11- 168x25 (High speed)	RKI11- 168x50 (High torque)	RKI11- 168x50 (High speed)	RKI11- 168x100 (High torque)	RKI11- 168x100 (High speed)
Number of pole pairs	Ρ		11	11	11	11	11	11
Ultimate torque (1 s) at I _u	T _u	Nm	117	103	233	207	466	413
Max. peak torque (saturation range)	Tp	Nm	101	88	202	176	404	351
Max. continuous torque (up to n_1 - cooled)	T _{cw1}	Nm	43	35	103	83	230	187
Max. continuous torque (up to n_2 - cooled)	T _{cw2}	Nm	32	26	77	63	173	140
Torque at n _{max} (cooled)	T ₃	Nm	16	11	39	26	86	58
Max. stall torque (cooled)	T _{sw}	Nm	31	25	73	59	164	133
Ripple torque (cogging, reluctance torque)	T _r	Nm	0.3	0.3	0.6	0.5	1.2	1.1
Power loss (copper) at T _p (130 °C)	P _{lp}	W	3570	3522	5058	4989	8033	7924
Power loss (copper) at T _{cw1} (120 °C)	P _{lw}	W	455	455	911	911	1822	1822
Motor constant (25 °C)	k _m	Nm/√W	2.56	2.08	4.31	3.50	6.84	5.56
Electrical time constant	τ _e	ms	5.3	4.1	7.4	5.8	9.4	7.3
Water flow (cooling)	dV/dt	l/min	1.9	1.9	3.7	3.7	7.4	7.4
Water temperature difference (cooling)	Δ9	К	3.5	3.5	3.5	3.5	3.5	3.5
Max. DC link voltage	U _{DCL-max}	V _{DC}	650	650	650	650	650	650
Max. continuous current (speed dependent)	I _{cw}	A _{rms}	60.0	60.0	60.0	60.0	60.0	60.0
Dynamic specific values (thermally conditioned)								
Limiting speed for T _{cw1}	n ₁	rpm	273	273	273	273	273	273
Limiting speed for T_{cw2}	n ₂	rpm	1091	1227	1091	1227	1091	1227
Max. speed for $P_{cont} = constant$	n _{max}	rpm	2182	3000	2182	3000	2182	3000
Max. continuous power output (in field weakening)	P _{cont}	kW	3.7	3.4	8.8	8.0	19.7	18.1

Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%

RKI5-230xH Drawing

Mechanical interfaces	Symbol	Unit	RKI5- 230x25	RKI5- 230x50	RKI5- 230x100
Height of rotor Height of stator	H ₁ H ₂	mm mm	65 70	90 95	140 145
Inertia of rotor	J	kgm ²	0.061	0.104	0.189

Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%


RKI5-230xH Technical data (dimensioning examples)

Technical data	Symbol	Unit	RKI5- 230x25 (High torque)	RKI5- 230x25 (High speed)	RKI5- 230x50 (High torque)	RKI5- 230x50 (High speed)	RKI5- 230x100 (High torque)	RKI5- 230x100 (High speed)
Number of pole pairs	Ρ		15	15	15	15	15	15
Ultimate torque (1 s) at l _u	T _u	Nm	208	176	415	351	831	702
Max. peak torque (saturation range)	T _p	Nm	179	151	358	301	716	603
Max. continuous torque (up to n_1 - cooled)	T _{cw1}	Nm	104	84	248	200	557	450
Max. continuous torque (up to n_2 - cooled)		Nm	78	63	186	150	417	337
Torque at n _{max} (cooled)	T ₃	Nm	39	26	93	61	209	138
Max. stall torque (cooled)	T _{sw}	Nm	74	60	176	142	395	319
Ripple torque (cogging, reluctance torque)	T _r	Nm	0.5	0.5	1.1	0.9	2.1	1.8
Power loss (copper) at T _p (130 °C)	P _{lp}	W	3288	3288	4658	4658	7398	7398
Power loss (copper) at T _{cw1} (120 °C)	P _{lw}	W	628	628	1256	1256	2513	2513
Motor constant (25 °C)	k _m	Nm/√W	5.27	4.26	8.86	7.16	14.07	11.36
Electrical time constant	τ _e	ms	6.1	7.9	8.6	11.2	10.9	14.1
Water flow (cooling)	dV/dt	l/min	2.6	2.6	5.1	5.1	10.3	10.3
Water temperature difference (cooling)	∆ϑ	K	3.5	3.5	3.5	3.5	3.5	3.5
Max. DC link voltage	U _{DCL-max}	V _{DC}	650	650	650	650	650	650
Max. continuous current (speed dependent)	I _{cw}	A _{rms}	80.0	80.0	80.0	80.0	80.0	80.0
Dynamic specific values (thermally conditioned)								
Limiting speed for T _{cw1}	n ₁	rpm	200	200	200	200	200	200
Limiting speed for T _{cw2}	n ₂	rpm	800	900	800	900	800	900
Max. speed for P _{cont} = constant	n _{max}	rpm	1600	2200	1600	2200	1600	2200
Max. continuous power output (in field weakening)	P _{cont}	kW	6.6	6.0	15.6	14.2	35.0	31.8

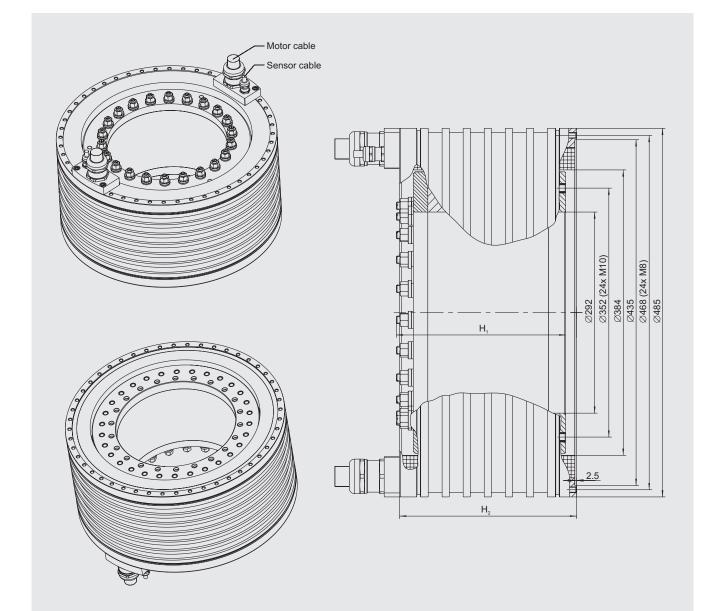
Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%

RKI11-298xH

Drawing

Mechanical interfaces	Symbol	Unit	RKI11- 298x50	RKI11- 298x100	RKI11- 298x150
Height of rotor Height of stator	H ₁ H ₂	mm mm	100 110	150 160	200 210
Inertia of rotor	J	kgm ²	0.29	0.51	0.74

Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%


RKI11-298xH Technical data (dimensioning examples)

Technical data	Symbol	Unit	RKI11- 298x50 (High torque)	RKI11- 298x50 (High speed)	RKI11- 298x100 (High torque)	RKI11- 298x100 (High speed)	RKI11- 298x150 (High torque)	RKI11- 298x150 (High speed)
Number of pole pairs	Р		22	22	22	22	22	22
Ultimate torque (1 s) at I _u	T _u	Nm	731	605	1461	1209	2192	1814
Max. peak torque (saturation range)	T _p	Nm	626	524	1252	1048	1879	1572
Max. continuous torque (up to n_1 - cooled)	CVVI	Nm	375	302	842	677	1321	1063
Max. continuous torque (up to n_2 - cooled)	0112	Nm	281	226	631	508	991	797
Torque at n _{max} (cooled)	Т ₃	Nm	141	93	316	208	496	326
Max. stall torque (cooled)	T _{sw}	Nm	266	214	598	481	938	755
Ripple torque (cogging, reluctance torque)	T _r	Nm	1.9	1.6	3.8	3.1	5.6	4.7
Power loss (copper) at T _p (130 °C)	P _{lp}	W	6739	6739	10703	10703	14667	14667
Power loss (copper) at T _{cw1} (120 °C)	P _{lw}	W	1559	1559	3117	3117	4676	4676
Motor constant (25 °C)	k _m	Nm/√W	10.55	8.49	16.75	13.48	21.46	17.27
Electrical time constant	τ _e	ms	9.5	9.5	12.0	12.0	13.1	13.1
Water flow (cooling)	dV/dt	l/min	6.4	6.4	12.7	12.7	19.1	19.1
Water temperature difference (cooling)	Δ9	К	3.5	3.5	3.5	3.5	3.5	3.5
Max. DC link voltage	U _{DCL-max}	V _{DC}	650	650	650	650	650	650
Max. continuous current (speed dependent)	I _{cw}	A _{rms}	80.0	80.0	80.0	80.0	80.0	80.0
Dynamic specific values (thermally conditioned)								
Limiting speed for T _{cw1}	n ₁	rpm	136	136	136	136	136	136
Limiting speed for T_{cw2}	n ₂	rpm	545	614	545	614	545	614
Max. speed for P_{cont} = constant	n _{max}	rpm	1091	1500	1091	1500	1091	1500
Max. continuous power output (in field weakening)	P _{cont}	kW	16.1	14.5	36.1	32.6	56.6	51.2

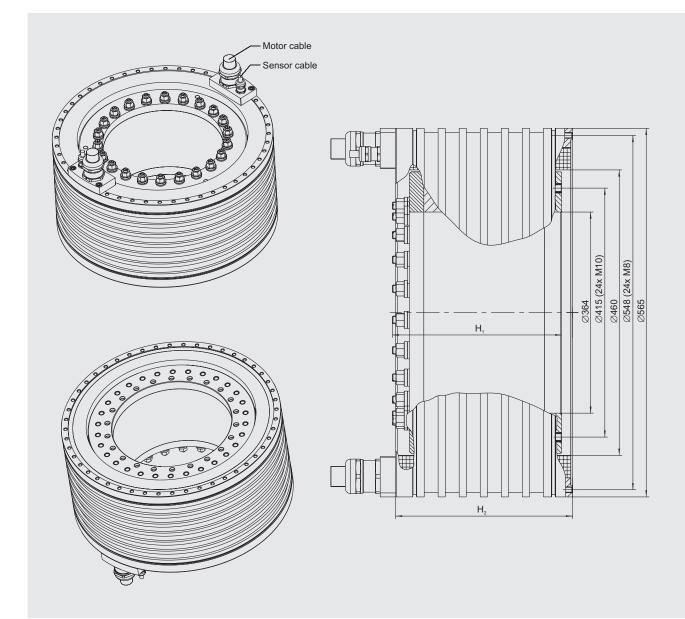
Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%

RKI5-384xH

Drawing

Mechanical interfaces	Symbol	Unit	RKI5- 384x50	RKI5- 384x100	RKI5- 384x150
Height of rotor Height of stator	H ₁ H ₂	mm mm	103 110	153 160	203 210
Inertia of rotor	J	kgm ²	0.69	1.23	1.77

Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%


RKI5-384xH Technical data (dimensioning examples)

Technical data	Symbol	Unit	RK15- 384x50 (High torque)	RKI5- 384x50 (High speed)	RKI5- 384x100 (High torque)	RKI5- 384x100 (High speed)	RKI5- 384x150 (High torque)	RKI5- 384x150 (High speed)
Number of pole pairs	Ρ		30	30	30	30	30	30
Ultimate torque (1 s) at l _u	T _u	Nm	1195	993	2390	1986	3585	2979
Max. peak torque (saturation range)	T _p	Nm	854	717	1707	1434	2561	2151
Max. continuous torque (up to n ₁ - cooled)	T _{cw1}	Nm	632	510	1418	1145	2225	1797
Max. continuous torque (up to n ₂ - cooled)		Nm	474	383	1063	859	1669	1348
Torque at n _{max} (cooled)		Nm	237	157	532	352	835	552
Max. stall torque (cooled)		Nm	449	362	1007	813	1580	1276
Ripple torque (cogging, reluctance torque)		Nm	2.6	2.2	5.1	4.3	7.7	6.5
Power loss (copper) at T _p (130 °C)	P _{lp}	W	5477	5477	8698	8698	11920	11920
Power loss (copper) at T _{cw1} (120 °C)	P _{lw}	W	1934	1934	3868	3868	5803	5803
Motor constant (25 °C)	k _m	Nm/√W	18.20	14.70	28.88	23.33	37.01	29.89
Electrical time constant	τ _e	ms	8.5	8.5	10.7	10.7	11.7	11.7
Water flow (cooling)	dV/dt	l/min	7.9	7.9	15.8	15.8	23.7	23.7
Water temperature difference (cooling)	∆ϑ	K	3.5	3.5	3.5	3.5	3.5	3.5
Max. DC link voltage	U _{DCL-max}	V _{DC}	650	650	650	650	650	650
Max. continuous current (speed dependent)	I _{cw}	A _{rms}	120.0	120.0	120.0	120.0	120.0	120.0
Dynamic specific values (thermally conditioned)								
Limiting speed for T _{cw1} Limiting speed for T _{cw2} Max. speed for P _{cont} = constant Max. continuous power output (in field weakening)	n ₁ n ₂ n _{max} P _{cont}	rpm rpm rpm kW	100 400 800 19.8	100 450 1100 18.0	100 400 800 44.6	100 450 1100 40.5	100 400 800 69.9	100 450 1100 63.5

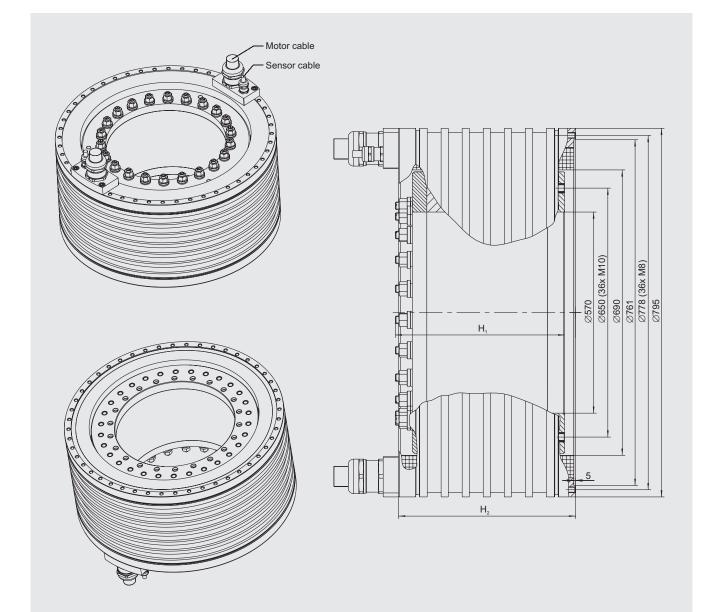
Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%

RKI11-460xH

Drawing

Mechanical interfaces	Symbol	Unit	RKI11- 460x50	RKI11- 460x100	RKI11- 460x150
Height of rotor Height of stator	H ₁ H ₂	mm mm	87 110	137 160	187 210
Inertia of rotor	J	kgm ²	1.22	2.16	3.11

Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%


RKI11-460xH Technical data (dimensioning examples)

Technical data	Symbol	Unit	RKI11- 460x50 (High torque)	RKI11- 460x50 (High speed)	RKI11- 460x100 (High torque)	RKI11- 460x100 (High speed)	RKI11- 460x150 (High torque)	RKI11- 460x150 (High speed)
Number of pole pairs	Ρ		33	33	33	33	33	33
Ultimate torque (1 s) at I_u Max. peak torque (saturation range) Max. continuous torque (up to n_1 - cooled) Max. continuous torque (up to n_2 - cooled) Torque at n_{max} (cooled) Max. stall torque (cooled)	CVVI	Nm Nm Nm Nm Nm	1784 1529 907 680 340 644	1546 1340 705 529 217 501	3568 3058 2035 1526 764 1445	3092 2680 1583 1187 486 1124	5352 4587 3194 2396 1198 2268	4638 4020 2484 1863 763 1764
Ripple torque (cogging, reluctance torque) Power loss (copper) at T _p (130 °C) Power loss (copper) at T _{cw1} (120 °C) Motor constant (25 °C)	T _r P _{lp} P _{lw}	Nm W W Nm/√W	4.6 10109 2293 21.04	4.0 11864 2293 16.37	9.2 16055 4585 33.40	8.0 18842 4585 25.98	13.8 22001 6878 42.79	12.1 25821 6878 33.28
Water flow (cooling) Water temperature difference (cooling)	k _m τ _e dV/dt Δϑ	nin/ ww ms l/min K	9.4 3.5	9.4 3.5	8.6 18.7 3.5	10.9 18.7 3.5	9.4 28.1 3.5	11.9 28.1 3.5
Max. DC link voltage Max. continuous current (speed dependent)	U _{DCL-max} I _{cw}	V _{DC} A _{rms}	650 150.0	650 150.0	650 150.0	650 150.0	650 150.0	650 150.0
Dynamic specific values (thermally conditioned)								
Limiting speed for T_{cw1} Limiting speed for T_{cw2} Max. speed for P_{cont} = constant Max. continuous power output (in field weakening)	n ₁ n ₂ n _{max} P _{cont}	rpm rpm rpm kW	91 364 727 25.9	91 409 1000 22.7	91 364 727 58.1	91 409 1000 50.9	91 364 727 91.2	91 409 1000 79.8

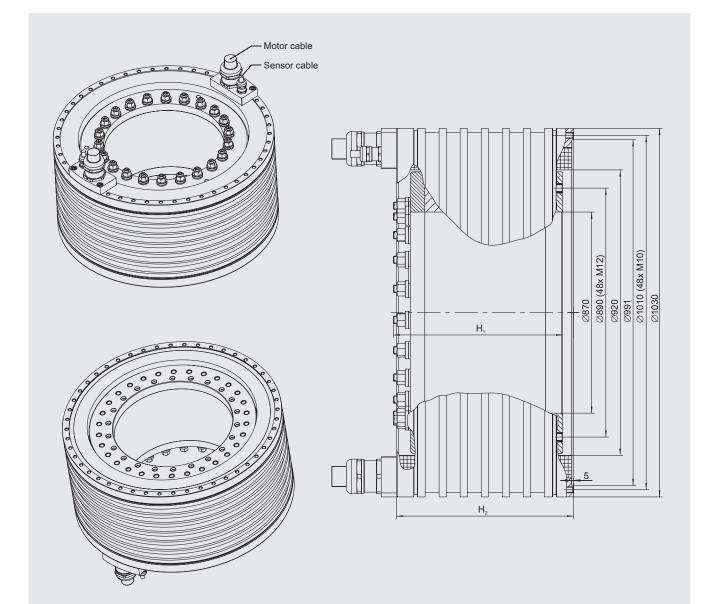
Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%

RKI11-690xH

Drawing

Mechanical interfaces	Symbol	Unit	RKI11- 690x50	RKI11- 690x100	RKI11- 690x150
Height of rotor Height of stator	H ₁ H ₂	mm mm	115 130	165 180	215 230
Inertia of rotor	J	kgm ²	6.62	10.35	14.09

Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%


RKI11-690xH Technical data (dimensioning examples)

Technical data	Symbol	Unit	RKI11- 690x50 (High torque)	RKI11- 690x50 (High speed)	RKI11- 690x100 (High torque)	RKI11- 690x100 (High speed)	RKI11- 690x150 (High torque)	RKI11- 690x150 (High speed)
Number of pole pairs	Р		55	55	55	55	55	55
Ultimate torque (1 s) at l _u Max. peak torque (saturation range)	T _u T _p	Nm Nm	4361 3738	3568 3092	8722 7476	7136 6185	13083 11214	10704 9277
Max. continuous torque (up to n_1 - cooled) Max. continuous torque (up to n_2 - cooled)	T _{cw2}	Nm Nm Nm	1900 1425 713	1512 1134 464	4265 3199 1600	3392 2544 1041	6693 5020 2511	5324 3993 1634
Torque at n _{max} (cooled) Max. stall torque (cooled) Ripple torque (cogging, reluctance torque)	T ₃ T _{sw} T _r	Nm Nm Nm	1349 11.2	1073 9.3	3028 22.4	2409 18.6	4752 33.6	3780 27.8
Power loss (copper) at T _p (130 °C) Power loss (copper) at T _{cw1} (120 °C)	P _{lp} P _{lw}	W W	19715 3286	19715 3286	31313 6571	31313 6571	42910 9857	42910 9857
Motor constant (25 °C) Electrical time constant	k _m τ _e	Nm/√W ms	42.00 8.6	33.41 8.6	66.65 10.8	53.02 10.8	85.40 11.8	67.93 11.8
Water flow (cooling) Water temperature difference (cooling)	dV/dt ∆ϑ	l/min K	13.4 3.5	13.4 3.5	26.8 3.5	26.8 3.5	40.2 3.5	40.2 3.5
Max. DC link voltage Max. continuous current (speed dependent)	U _{DCL-max} I _{cw}	V _{DC} A _{rms}	650 175.0	650 175.0	650 175.0	650 175.0	650 175.0	650 175.0
Dynamic specific values (thermally conditioned)								
Limiting speed for T_{cw1} Limiting speed for T_{cw2} Max. speed for $P_{cont} = constant$ Max. continuous power output (in field weakening)	n ₁ n ₂ n _{max} P _{cont}	rpm rpm rpm kW	55 218 436 32.6	55 245 600 29.1	55 218 436 73.1	55 245 600 65.4	55 218 436 114.7	55 245 600 102.6

Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%

RKI11-920xH

Mechanical interfaces	Symbol	Unit	RKI11- 920x50	RKI11- 920x100	RKI11- 920x150
Height of rotor Height of stator	H ₁ H ₂	mm mm	127 130	177 180	227 230
Inertia of rotor	J	kgm ²	20.48	32.58	44.68

Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%

RKI11-920xH Technical data (dimensioning examples)

Technical data	Symbol	Unit	RKI11- 920x50 (High torque)	RKI11- 920x50 (High speed)	RKI11- 920x100 (High torque)	RKI11- 920x100 (High speed)	RKI11- 920x150 (High torque)	RKI11- 920x150 (High speed)
Number of pole pairs	Ρ		66	66	66	66	66	66
Ultimate torque (1 s) at I _u	T _u	Nm	6872	5709	13743	11418	20615	17126
Max. peak torque (saturation range)	Tp	Nm	5890	4948	11780	9895	17670	14843
Max. continuous torque (up to n ₁ - cooled)	T _{cw1}	Nm	3368	2721	7560	6106	11864	9582
Max. continuous torque (up to n_2 - cooled)	T _{cw2}	Nm	2526	2040	5670	4579	8898	7187
Torque at n _{max} (cooled)	T ₃	Nm	1264	835	2836	1874	4451	2941
Max. stall torque (cooled)	T _{sw}	Nm	2392	1932	5367	4335	8423	6804
Ripple torque (cogging, reluctance torque)	T _r	Nm	17.7	14.8	35.3	29.7	53.0	44.5
Power loss (copper) at T _p (130 °C)	P _{lp}	W	20288	20288	32223	32223	44157	44157
Power loss (copper) at T _{cw1} (120 °C)	P _{lw}	W	4279	4279	8557	8557	12836	12836
Motor constant (25 °C)	k _m	Nm/√W	65.24	52.69	103.53	83.62	132.66	107.15
Electrical time constant	τ _e	ms	10.0	10.0	12.6	12.6	13.8	13.8
Water flow (cooling)	dV/dt	l/min	17.5	17.5	34.9	34.9	52.4	52.4
Water temperature difference (cooling)	$\Delta \vartheta$	К	3.5	3.5	3.5	3.5	3.5	3.5
Max. DC link voltage	U _{DCL-max}	V _{DC}	650	650	650	650	650	650
Max. continuous current (speed dependent)	I _{cw}	A _{rms}	200.0	200.0	200.0	200.0	200.0	200.0
Dynamic specific values (thermally conditioned)								
Limiting speed for T _{cw1}	n ₁	rpm	45	45	45	45	45	45
Limiting speed for T_{cw2}	n ₂	rpm	182	205	182	205	182	205
Max. speed for P _{cont} = constant	n _{max}	rpm	364	500	364	500	364	500
Max. continuous power output (in field weakening)	P _{cont}	kW	48.1	43.7	108.0	98.1	169.4	153.9

Subject to changes without advance notification, according to technical progress. • Tolerance range of values: ±10%

Checklist for Your Enquiry idam.sales@schaeffler.com or Fax +49 3681 7574-30

Please fill out the following checklist so that we can respond to your enquiry quickly and precisely. Please feel free to contact the IDAM sales team if you have any questions.

Company	Contact	Sector/project designation
Telephone	E-mail	
Application		
Rotary table	Swivel application	Other
Predominant operating mode		
Continuous operation	□ Intermittent operation	
(S1, e.g. in NC axes)	(S6, e.g. in cycled applications)	
Operating several motors in parallel		
No	Yes	
	Tandem arrangement	☐ Janus arrangement
Motor type (if known)		
Any required compatibility to	Manufacturer	Туре
Installation space	Min. internal diameter / max. external dia	_
Required operating points		
Operating point 1		
Torque	Speed	
Continuous operation (S1)	Intermittent operation (S6)	Standstill
Operating point 2		
Torque	Speed	
Continuous operation (S1)	Intermittent operation (S6)	Standstill
Frequency converter	Manufacturer	Туре
DC link voltage [V _{DC}]	Constant operation current (S1)	Peak current

Cooling U Water cooling (standard)	Convection	Other
Cable		
Cable outlet Axial (standard)	Tangential	🗌 Radial
Cable type	Cable length	
Separate motor and sensor cables	☐ 1 m standard, open-ended	Other types and lengths upon request.
O-rings (seals required for water cooled mo	otors)	
Yes	□ No	
Temperature sensors		
PTC and PT1000 (standard)	Others upon request.	
Technical documentation		
Paper	CD CD	Language
General information		
Single item	Series	Prototype for series
Estimated annual quantity required	Planned series start	Price range/cost of previous solution
Desired date of quotation		
Further processing by:		Date:
		Date:
		Date:

RKI Torque Motors for Turning/Milling Applications

Combined turning/milling machines (universals) should have a wide range of torque for the milling process and a wide range of speed for the turning process. Current torque motors (standards) often cannot fulfill this requirement simply caused by performance limits. The RKI motor technology enables reaching such high torque requirements as well as high speed requirements up to 3000 rpm. Moreover it's important to consider the whole system view especially the interaction of motor and bearing. We gladly give advice to select suitable components.

The fastest rotary axis

Through the combination of axial angular contact ball bearings ZKLDF of Generation B with torque motors RKI, rotary axes using standard components can be achieved with previously unattainable performance characteristics. In this way, these products make a decisive contribution to increasing the productivity of machine tools.

Technical Information and Consulting Services

Class leading technology and competent consulting services are two of the major benefits of working with IDAM. IDAM application engineers are looking forward to support you choose the perfect drive for your application.

Get in contact with us. Phone: +49 3681 7574-0 Automation/medical engineering E-mail: idam.automation@schaeffler. com

Productronics/measuring technology

E-mail: idam.productronic@schaeffler. com

Production machinery/heavy industries E-mail: idam.pm@schaeffler.com

Automotive E-mail: idam.automotive@schaeffler. com

INA/FAG bearings by Schaeffler for the production machinery E-mail: info.machine-tools@schaeffler.com Web: www.schaeffler.com/machine-tools

TPI 120: High Precision Bearings for Combined Loads

IDAM Worldwide

Austria

Phone: +43 2672 2023201 E-mail: idam.austria@schaeffler.com

Canada

Phone: +780 980 3016 E-mail: idam.canada@schaeffler.com

China

Phone: +86 21 39576942 E-mail: idam.china@schaeffler.com

Finland

Phone: +358 207 366204 E-mail: idam.finland@schaeffler.com

Israel

Phone: +972 4 8114146 E-mail: idam.israel@schaeffler.com

Italy

Phone: +39 0321 929267 E-mail: idam.italia@schaeffler.com

Japan

Phone: +81 45 2879412 E-mail: idam.japan@schaeffler.com

Korea

Phone: +82 2 311 3440 E-mail: idam.korea@schaeffler.com

Netherlands

Phone: +31 342 403208 E-mail: idam.nederland@schaeffler.com

Russia

Phone: +7 495 7377660 E-mail: idam.russia@schaeffler.com

Singapore/Malaysia

Phone: +65 6549 6860 E-mail: idam.singapore@schaeffler.com

Spain/Portugal

Phone: +34 93 4803675 E-mail: idam.iberia@schaeffler.com

Switzerland

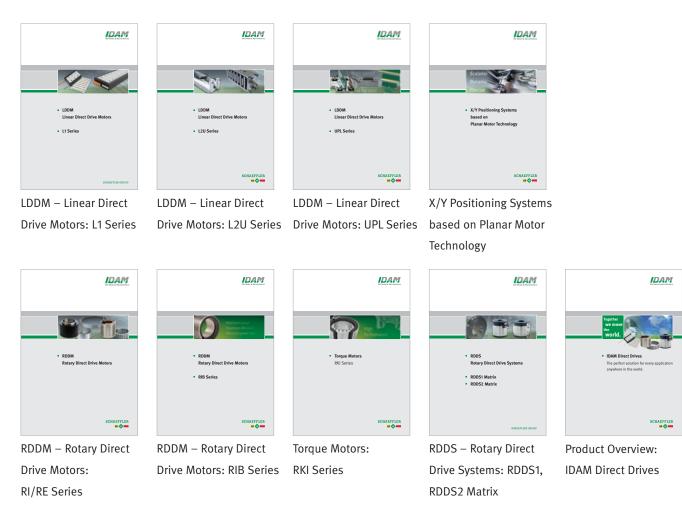
Phone: +41714666471 E-mail: idam.schweiz@schaeffler.com

Taiwan E-mail: idam.taiwan@schaeffler.com

United Kingdom E-mail: idam.uk@schaeffler.com

USA

Phone: +1 803 5488500 E-mail: idam.usa@schaeffler.com


Other countries

E-mail: idam.sales@schaeffler.com

Overview of Publications

Are you interested in detailed technical information?

We would be happy to send you our product brochures. Contact us: idam@schaeffler.com

We would be happy to provide you with product brochures for our electronic assemblies and system solutions.

All information about our motors and systems can also be found on our website at www.idam.de.

INA – Drives & Mechatronics AG & Co. KG

Mittelbergstrasse 2 98527 Suhl, Germany

 Phone
 +49 3681 | 7574-0

 Fax
 +49 3681 | 7574-30

E-mail idam@schaeffler.com

Web

www.idam.de

Issue: August 2016 I Subject to changes without advance notification, according to technical progress. Photos: IDAM AG & Co. KG, Schaeffler Technologies AG & Co. KG